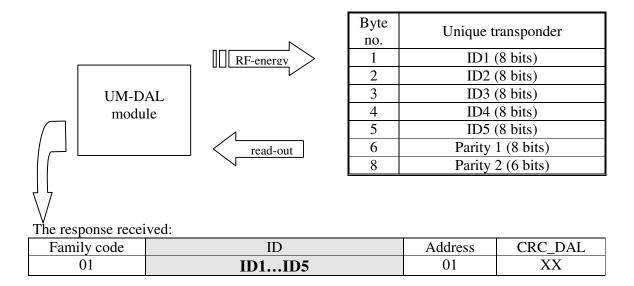


Technical Data Sheet

Contents

Contents	2
Introduction	3
Specifications	
Pin description	
PCB Dimensions	
Connections diagram	5
Frame format of serial transmission for UM-DAL	
CRC value calculation	6
Unique transponder description	


NETRONIX · 2

Introduction

UM-DAL module operates on principle of the contact less unique data acquiring from UNIQUE (RFID) transponders. Rea-dout data is transmitted by means of Dallas'a 1-WIRE protocol. It means, that the reader is compatible to the Dallas DS1990 readers.

The principle of module operation:

Applying the transponder to reader – read-out (from transponder) – data transmission (to master unit).

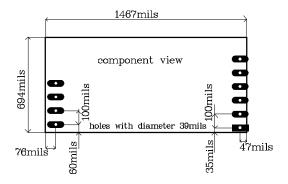
The module is equipped with two outputs, which signal successful read-out of the transponder.

Connect the antenna to UM-DAL module in form of air coil, which will produce electromagnetic field and supply the transponder located in this field.

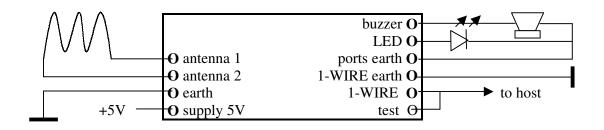
Specifications

Supply voltage Vdd	4.55.5 V
Supply current	555 mA
Module rated operating radio frequency	125 kHz
Modulation type of data received from transponder	Manchester
Baud rate of data received from transponder	RF/64 (1953 b/s)
Antenna	External 1 mH ±5%
Output current capacity: Dall and TransponderLed	15 mA
Type of Dall output	open collector
Max polarization voltage of Dall output	Vdd+0.5 V
Transponder read-out distance	815 cm depending on antenna
Maximum read-out frequency	2 transponder read-outs/sec
Transmission parameters to master unit	-
•	DS1990 specification

<u>NETRONIX</u> . 3


Pin description

			О	buzzer output
		UM-DAL	O	interrupt output (LED)
antenna 1	O		O	ports earth
antenna 2		37 x 18 mm	O	1-Wire connector earth
supply earth supply 5V	O		O	1-Wire connector
supply 5V	O		O	test


Pin assignment element side view

NETRONIX . 4

PCB Dimensions

Connections diagram

NETRONIX . 5

Frame format of serial transmission for UM-DAL

Family code	ID	Address	CRC_DAL
01	ID1ID5	01	XX

FamilyCode - 0x01 always

ID1...5 – unique identification number for transponder (5 bytes)

Address - 0x01 always

CRC_DAL- control sum data sent

The format complies with 1-WIRE protocol specification of Dallas, for instance DS1990. It means, that UM-DAL reader can be used as replacement of DS1990 chips.

During operation, the reader tries to read transponder cyclically. In case of wrong read-out, the reader does not respond for pulses sent from 1-Wire master. The bus does not see the reader and it is the same situation when the chip is not applied to the chip reader. In case of successful read-out of transponder, UM-DAL begins to send data via 1-WIRE bus.

CRC value calculation

CRC_DAL complies with DS1990 specification. The CRC value is calculated from equation $x^8+x^5+x^4+1$ with initial value equal to 0x00. This value is calculated in virtue of all the frame bytes except the last one.

Example of calculation of CRC value, written in C language:

```
unsigned char CalcCRCDallas(bank2 unsigned char *SourceAdr)
{
    unsigned char i,k,In,CRC=0;
    for(i=0;i<7;i++)
    {
        In=*SourceAdr;
        for(k=0;k<8;k++)
        {
            if((In^CRC)&1) CRC=((CRC^0x18)>>1)|0x80;
            else CRC=CRC>>1;
            In>>=1;
        }
        SourceAdr++;
    }
    return(CRC);
}
```

Where: *SourceAdr is flag of the data buffer beginning

NETRONIX : 6

Unique transponder description

The Unique transponder (EM Microelectronic standard – Marin SA, H4102) comprises 5 bytes with laser written unique ID number. Correctness of read-out data process is protected with parities written in 2 subsequent bytes. It gives 40 bytes of unique ID number. Owing to the UM-DAL reader, the transponder reads the ID number, verifies read-out correctness automatically and next sends this number to master unit via serial interface port.

Byte	Unique transponder
no.	
1	ID1 (8 bits)
2	ID2 (8 bits)
3	ID3 (8 bits)
4	ID4 (8 bits)
5	ID5 (8 bits)
6	Parity 1 (8 bits)
8	Parity 2 (6 bits)

Overview of latest NETRONIX products is available on website: http://www.netronix.pl/

<u>NETRONIX</u> . 7